Решение геометрических задач при помощи шести стандартных вопросов

(на примере тем, рассмотренных в учебнике «Геометрия» для 7 класса авторов Атанасяна Л. С. и др.)

Н. В. Лахова RN9TEMETPAN 3A17 SAHRTUŬ в) Начерти тупой угол AOD и во внутренней его области два луча OB и OC, образующие прямой угол BOC.

Найди $\angle AOD$, если $\angle AOB = 10^{\circ}$ и $\angle COD = 15^{\circ}$.

г) Начерти острый угол MAK, во внутренней его области — луч AP и внутри угла MAP — луч AN.

Найди угол NAP, если $\angle MAN = 14^{\circ}$, $\angle PAK = 16^{\circ}$, а $\angle MAK = 70^{\circ}$.

В конце книжки есть раздел «Проверь свое решение».

Конспект № 2

Равенство фигур. Середина отрезка. Биссектриса угла. Измерение отрезков

1. Две геометрические фигуры называют равными, если их можно совместить наложением.

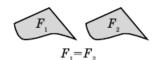
$$A \longrightarrow B \\ AB = CD$$

$$D$$

M N $\angle M = \angle N$

Равные отрезки отмечают одинаковыми штрихами

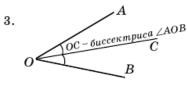
Равные углы отмечают одинаковыми дугами



Равные фигуры \boldsymbol{F}_1 и \boldsymbol{F}_2

Середина отрезка — это точка, которая делит его пополам (на 2 равных отрезка).

AC = CB = AB : 2 = 36 mm : 2 = 18 mm.



Биссектриса угла — это **луч**, исходящий из вершины угла, и делящий его пополам (на 2 равных угла).

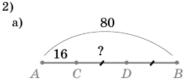
$$\angle AOC = \angle COB = \angle AOB : 2 = 42^{\circ} : 2 = 21^{\circ}.$$

4. Длина отрезка — это расстояние между его концами.

Единицы измерения длины: 1 миллиметр - 1 мм, 1 сантиметр - 1 см = 10 мм, 1 дециметр - 1 дм = 10 см = 100 мм, 1 метр - 1 м = 10 дм = 100 см = 1000 мм, 1 километр - 1 км = 1000 м

Конец конспекта

Решим вместе

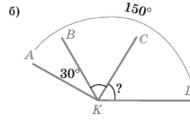


Дано: AB = 80 м, AC = 16 м, D — середина CB. Найти: CD.

Решение:

- 1) CB = AB AC = 80 16 = 64 (M);
- 2) CD = CB : 2 = 64 : 2 = 32 (M).

Ответ: CD = 32 м.



Дано: $\angle AKD = 150^{\circ}$, $\angle AKB = 30^{\circ}$, KC — биссектриса $\angle BKD$. Найти: $\angle CKD$.

Решение:

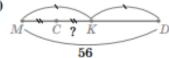
- $D 1) \angle BKD = \angle AKD \angle AKB =$ $= 150^{\circ} - 30^{\circ} = 120^{\circ};$
 - 2) $\angle CKD = \angle BKD : 2 = 120^{\circ} : 2 = 60^{\circ}$.

D-----

Реши сам

OTBET: $\angle CKD = 60^{\circ}$.

- 2. а) Серединой отрезка MD является точка K, и серединой MK точка C. Найди CK, если MD = 56 мм.
- б) Угол AMB развернутый. MK его биссектриса, а MC биссектриса угла KMB. Найди $\angle CMB$.

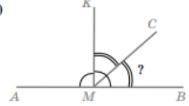


Дано: MD = 56 мм, K — середина MD, C — середина MK. Найти: CK.

Решение:

- 1) MK = MD: 2 = 56: 2 = 28 (MM);
- 2) CK = MK : 2 = 28 : 2 = 14 (MM).

Ответ: CK = 14 мм.



Дано:

 $\angle AMB = 180^{\circ}$, MK — бисс. $\angle AMB$, MC — бисс. $\angle KMB$.

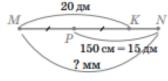
Найти: ∠СМВ.

Решение:

- 1) $\angle KMB = \angle AMB : 2 = 180^{\circ} : 2 = 90^{\circ};$
- 2) $\angle CMB = \angle KMB : 2 = 90^{\circ} : 2 = 45^{\circ}$.

Ответ: $\angle CMB = 45^{\circ}$.

3.



Дано:

MP = PK, MK = 20 дм,

PN = 150 cm.

Hайти: MN в мм.

Анализ:

- 1) MN = MP + PN, MP ?
- 2) MP = MK : 2 = 20 дм : 2 = 10 дм.

Решение:

PN = 150 см = 15 дм;

- 1) MP = MK : 2 = 20 : 2 = 10 (дм), т. к. MP = PK по усл.;
- 2) MN = MP + PN = 10 + 15 = 25 (дм) = 250 см = 2500 мм.

Ответ: MN = 2500 мм.

Задачу можно было решить другим способом, но он длиннее.

Реши сам

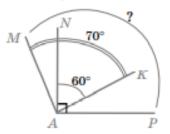
3. Отрезку MN принадлежит отрезок PK, так что точка P лежит между точками M и K. P — середина MK.

Найди расстояние между точками M и N, если MK = 20 дм, PN = 150 см.

Ответ дай в миллиметрах.

Решим вместе

4) Прямой угол NAP лежит во внутренней области угла MAP. Луч AK проходит между лучами AN и AP. Найдем угол MAP, если $\angle NAK = 60^{\circ}$, а $\angle MAK = 70^{\circ}$.



Дано:

 $\angle NAP = 90^{\circ}$,

 $\angle MAK = 70^{\circ}$,

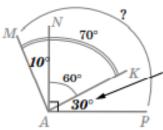
 $\angle NAK = 60^{\circ}$.

Найти: ∠MAP.

1 способ

Анализ: 1) $\angle MAP = \angle MAK + \angle KAP$; $\angle KAP - ?$

2) $\angle KAP = \angle NAP - \angle NAK = 90^{\circ} - 60^{\circ} = 30^{\circ}$.



Сведения, которые мы получаем в процессе решения, удобно отметить на чертеже другим цветом или в скобках. Здесь они будут выделены на чертежах более яркими цифрами или линиями.

Решение:

1) $\angle KAP = \angle NAP - \angle NAK = 90^{\circ} - 60^{\circ} = 30^{\circ}$;

2) $\angle MAP = \angle MAK + \angle KAP = 70^{\circ} + 30^{\circ} = 100^{\circ}$.

2 способ

Анализ: 1) $\angle MAP = \angle NAP + \angle MAN$, $\angle MAN - ?$

2) $/MAN = /MAK - /NAK = 70^{\circ} - 60^{\circ} = 10^{\circ}$

(10° отметим на чертеже).

Решение: 1) $\angle MAN = \angle MAK - \angle NAK = 70^{\circ} - 60^{\circ} = 10^{\circ}$;

2) $\angle MAP = \angle NAP + \angle MAN = 90^{\circ} + 10^{\circ} = 100^{\circ}$.

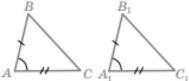
Ответ: ∠МАР-100°.

ЗАНЯТИЕ З. Признаки равенства треугольников. Равнобедренный и равносторонний треугольники

Конспект № 6

Признаки равенства треугольников

I признак. По двум сторонам и углу между ними.

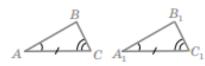


 C_1 ка, то такие треугольники равны. $A = \angle A_1$,

$$AB=A_1B_1$$
, $AC=A_1C_1$, $\angle A=\angle A_1$, значит, $\triangle ABC=\triangle A_1B_1C_1$ по I признаку.

Если 2 стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольни-

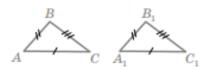
II признак. По стороне и двум прилежащим к ней углам.



 $AC=A_1C_1$, $\angle A=\angle A_1$, $\angle C=\angle C_1$, значит, $\Delta ABC=\Delta A_1B_1C_1$ по II признаку.

Если сторона и 2 прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

III признак. По трем сторонам.

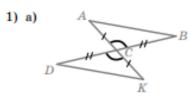


Если 3 **стороны** одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

 $AB = A_1B_1$, $AC = A_1C_1$, $BC = B_1C_1$, значит, $\triangle ABC = \triangle A_1B_1C_1$ по III признаку.

Конец конспекта

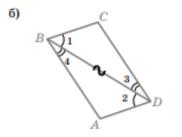
Решим вместе



Дано: C — середина DB и AK. Доказать: $\triangle ACB = \triangle DCK$.

Доказательство:

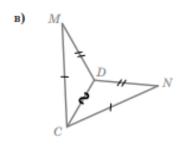
AC=CK, DC=CB по условию. $\angle ACB=\angle DCK$ (вертикальные), значит, $\triangle ACB=\triangle DCK$ по I признаку.



Дано: $\angle 1 = \angle 2$, $\angle 3 = \angle 4$. Доказать: $\triangle ABD = \triangle BCD$.

Доказательство:

BD — общая сторона у $\triangle ABD$ и $\triangle BCD$, $\angle 1 = \angle 2$, $\angle 3 = \angle 4$ по условию, значит, $\triangle ABD = \triangle BCD$ по II признаку.



Дано: MC = CN, MD = DN. Доказать: $\Delta CMD = \Delta CDN$.

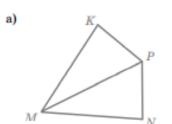
Доказательство:

 $MC\!=\!CN,\ MD\!=\!DN$ по условию. CD — общая сторона, значит, $\Delta MCD\!=\!\Delta DCN$ по III признаку.

Заметим, что каждый раз мы искали в треугольниках по три пары равных элементов, причем таких, которые необходимы для применения одного из признаков равенства.

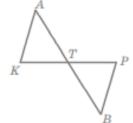
Реши сам

1. Докажи равенство треугольников на рис. а, б, в.



Дано: KP = PN, $\angle KPM = \angle MPN$. Доказать: $\Delta MKP = \Delta MPN$. Напоминаю, что при оформлении решений можно использовать сокращения.
Их перечень смотри на стр. 114–115.

б)



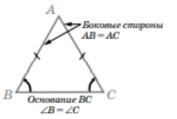
Дано: $\angle A = \angle B$, AT = TB. Доказать: $\triangle AKT = \triangle TPB$.

B) M C

N Дано: MN = PC, MP = NC. Доказать: $\Delta MPC = \Delta MNC$.

Конспект № 7

Равнобедренный и равносторонний треугольники



Равнобедренным (р/б) называют треугольник, у которого 2 стороны равны. Их называют боковыми, а третью сторону — основанием.

Свойство 1. В равнобедренном треугольнике углы при основании равны.

Так как в $\triangle ABC \ AB = AC$, то $\angle B = \angle C$.

Список сокращений и обозначений, в том числе общепринятых, для 7 класса

Сокращения

```
бисс. — биссектриса
   вертик. углы — вертикальные углы
        гипот. — гипотенуза
    доп. постр. — дополнительное построение
        док-во — доказательство
        док-ть — доказать
           зн. — значит
         и т.д. — и так далее
         и т.п. — и тому подобное
        кол-во — количество
         леж. — лежащий, лежащая
         мед. — медиана
         наиб. — наибольший, наибольшая
накр. леж. углы — накрест лежащие углы
одностор, углы — односторонние углы
         окр. — окружность
       опред. — определение
          оен. — оенование

    остр. — острый, остроугольный

         отр. — отрезок
       паралл. — параллельный, параллельны
      перпенд. — перпендикуляр, перпендикулярна
       по п. 1 — по пункту № 1
        постр. — построение
       по усл. — по условию
       провед. — проведённые, проведённых
        проп. — пропорция
        рав-во — равенство
        расст. — расстояние
        рассм. — рассмотрим
          р/б — равнобедренный
          р/с — равносторонний
          п/у — прямоугольный
         св-во - свойство
          сек. — секущая
```

```
след. — следовательно
соотв. углы — соответственные углы
станд. — стандартное
стор. — сторона, стороны
т.к. — так как
теор. — теорема
т-ка — точка
тр-к — треугольник
удовл. — удовлетворяет
ур-ние — уравнение
фиг. — фигура
ч.т.д. — что и требовалось доказать
эл-т — элемент
```

Обозначения

```
а; b — катеты;
c — гипотенуза;
D; d — диаметр;
h — высота;
ч. — часть, части, частей;
R; r — радиус;
р — расстояние;
0(A; MN) — расстояние от точки A до прямой MN.
```

114 115

Конспект № 8

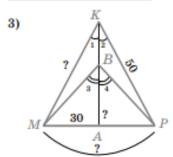
Основные вопросы к решению задачи и их применение

Вопрос 1 (В1). В какой геометрической фигуре находится элемент, о котором идет речь? Чем он в этой фигуре является?

Вопрос 2 (В2). Что известно об этой фигуре в задаче и какими свойствами она обладает?

Вопрос 3 (ВЗ). Чего не хватает для решения (доказательства)? Перепиши эти вопросы на кусок картона и всё время держи их перед глазами.

Решим вместе



Дано: ΔMKP , $\angle 1 = \angle 2, \angle 3 = \angle 4,$ KP = 50 cm, MA = 30 cm.

Найти:

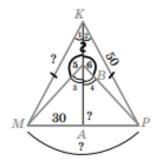
a) MK, 6) $\angle KAP$, B) MP.

Анализ.
Вероятно, МК = КР. Докажем это.
Путь I. В1. (Ответ на вопрос № 1.)
MK и KP — стороны ΔMKP .
B2. KA — биссектриса ΔMKP ($\angle 1 = \angle 2$).
Для доказательства $MK = KP$ этого недо-
статочно. Вернёмся к вопросу № 1.

Аполиз

Анализ кратко:

Путь І. 1) MK H KP B ΔMKP . $\angle 1 = \angle 2$. Нет.



Совет. Скопируй исходный чертеж на листок бумаги и двигай его по ходу решения вдоль страницы, отмечая другим **иветом** найденные величины и связи между ними.

Здесь они выделены жирными линиями.

Путь ІІ.

 В1. МК и КР — стороны ΔМКВ и ΔКРВ. В2. ∠1 = ∠2, KB — общая сторона, видимо |∠1 = ∠2, KB — общая. $\Delta MKB = \Delta KPB$.

ВЗ. Для док-ва этого не хватает 3-й пары 2) ∠5 и ∠6 — ? равных элементов. Может быть $\angle 5 = \angle 6 - ?$ Смежные с $\angle 3 = \angle 4$. (Тогда получится II признак рав-ва тр-ков.) II признак.

2) B1 и 2. $\angle 5$ и $\angle 6$ — смежные с $\angle 3 = \angle 4$, значит, $\angle 5 = \angle 6$.

Путь ІІ.

1) $MKuKPB\Delta MKBu\Delta KPB$.

Запись первой части решения

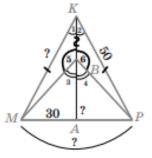
Теперь нужно, начиная с конца анализа, записать первую часть решения задачи (см ниже), а после этого вернуться к остальным вопросам задачи.

Эта линия означает перерыв на запись очередной части решения.

 В1. ∠КАР лежит между биссектрисой КА и основанием МР равнобедренного (p/6) ΔMKP.

В2. В р/б треугольнике биссектриса, проведенная к основанию, является его высотой и медианой, следовательно, $KA\perp MP$ и AP=MA=30 см.

3) ∠KAP — ? КА — бисс. $p/6 \Delta MKP$, значит, она высота и медиана.



Дано: $\triangle MKP$, $\angle 1 = \angle 2$, $\angle 3 = \angle 4$. KP = 50 cm, MA = 30 cm.Найти:

a) MK, 6) $\angle KAP$, B) MP.

Решение:

1) $\angle 5 = 180^{\circ} - \angle 3$ (смежные), $\angle 6 = 180^{\circ} - \angle 4$ (смежные), но $\angle 3 = \angle 4$, (по усл.), значит, $\angle 5 = \angle 6$ (отметим это на чертеже).

2) В ΔMKB и ΔKPB : $\angle 1 = \angle 2$ по усл., KB — общая сторона, $\angle 5 = \angle 6$ по п. 1 (то есть по пункту 1 решения), значит, $\Delta MKB = \Delta KPB$ по II признаку. След., MK = KP = 50 см (лежат против $\angle 5 = \angle 6$) (Св-во элементов равных тр-ков.)

Вернемся к анализу задачи.

3) Так как MK = KP (по п. 2), то $\Delta MKP - p/6$ и KA (бисс. по усл.) является его высотой ($KA \perp MP$) и медианой (AP = MA).

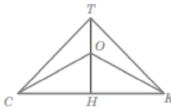
Значит. $\angle KAP = 90^{\circ}$ и $MP = 2MA = 2 \cdot 30 = 60$ (см). Ответ: MK = 50 см, $\angle KAP = 90^{\circ}$, MP = 60 см.

Конец конспекта

Теперь реши эту же задачу самостоятельно.

Реши сам

3.



Дано: CT = TK, CO = OK, $\angle COT = 110^{\circ}$. $\angle CTK = 92^{\circ}$, CK = 50 см. Найти: CH, $\angle CTO$, $\angle CHO$, $\angle CHO$, $\angle CHO$

Постарайся решить задачу двумя способами.

Замечания.

- Если задача имеет несколько способов решения, и в условии не сказано, каким именно способом её надо решить, отметка не может быть снижена за менее рациональный (но правильный!) способ решения.
- 2. Постепенно мы будем находить приёмы решения, которые используют очень часто. Например, в задаче 3) мы задействовали один из приёмов доказательства перпендикулярности: «Если в равнобедренном треугольнике к основанию проведена биссектрисса или медиана, то она перпендикулярна основанию». Назовём его свойством биссектриссы, медианы и высоты равнобедренного треугольника.

Все приёмы для решения геометрических задач, которые мы изучим в 7 классе, собраны на странице 117 этой книжки.

Чтобы вовремя о них вспомнить, добавим в перечень вопросов к решению задачи еще один дополнительный вопрос (В6): «Какой приём нужно использовать?» (см. стр. 116).

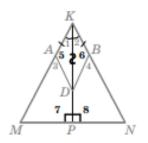
Решим вместе

4) В ΔMKN на высоте KP взята точка D. На сторонах MK и KN отмечены точки A и B соответственно, так что AK = KB. Известно, что /MKP = /PKN.

Докажем, что $\angle MAD = \angle DBN$, AM = BN и точка P равноудалена от концов отрезка MN.

Совет.

Чтобы правильно начертить чертеж, прочитай условие задачи до конца и пользуйся тем, что надо доказать так, будто ты это уже показал.



Дано: ΔMKN , $KP \perp MN$, AK = KB, $\angle 1 = \angle 2$. Док-ть: $\angle 3 = \angle 4$, AM = BN, MP = PN.

Анализ:	Краткая запись анализа:	
 В1. ∠3 и ∠4 — смежные с ∠5 и ∠6, которые лежат в ∆АКД и ∆КДВ. В2. В них АК – КВ, КД — общая, ∠1 – ∠2, тр-ки равны. Зн., ∠5 = ∠6. Запишем первую часть доказательства (см. ниже п. 1 и п. 2). 	 ∠3 и ∠4 смежн. с ∠5 и ∠6. док-ть: ΔАКD=ΔКDВ по I призн., зн., ∠5=∠6. 	3anuce l
 В1. АМ и ВN — части сторон МК и КN	3) AM = MK - AK, BN = KN - KB и AK = KB по усл. 4) надо док-ть ΔMKP = ΔKPN по П призн.	3 Sanuce 2
4) MP=PN из равенства ΔМКР и ΔКРN.	5) MP=PN из	anuce,3

Доказательство (кратко: док-во):

- 1) В $\triangle AKD$ и $\triangle KDB$: AK = KB по усл., $\angle 1 = \angle 2$ по усл., KD общая, значит, $\triangle AKD = \triangle KDB$ по I признаку, след., $\angle 5 = \angle 6$ (по св-ву эл-тов).
- 2) $\angle 3 = 180^{\circ} \angle 5$, $\angle 4 = 180^{\circ} \angle 6$ (смежные), но $\angle 5 = \angle 6$ по п.1, значит, $\angle 3 = \angle 4$ ($\angle MAD = \angle DBN$).
- 3) В ΔMKP и ΔKPN : KP общая сторона, $\angle 1 = \angle 2$ по усл., $\angle 7 = \angle 8$, т.к. $KP \bot MN$ по усл., значит, $\Delta MKP = \Delta KPN$ по II признаку, след. MK = KN (по св-ву эл-тов).
- AM = MK AK, BN = KN KB, но MK = KN по п. 3, AK = KB по усл., значит, AM = BN.
 - 5) Т. к. $\Delta MKP = \Delta KPN$ (по п. 3), то MP = PN (по св-ву эл-тов).

Стандартные

дополнительные построения

- В задачах на построение соедини полученные точки так, чтобы получились фигуры, свойствами которых можно воспользоваться для доказательства. (Обычно это треугольники.)
- Опусти перпендикуляр из точки на прямую, если нужно найти или использовать расстояние между ними.

Приёмы

для решения геометрических задач (7 класс)

- 1. Приёмы доказательства перпендикулярности:
 - Свойство биссектрисы, медианы и высоты равнобедренного треугольника;
 - Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой;
 - Данный треугольник равен прямоугольному треугольнику;
 - Биссектрисы односторонних углов при параллельных прямых перпендикулярны;
 - Виссектрисы смежных углов перпендикулярны.

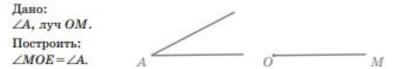
2. Замена.

- Если что-то (отрезок, угол и т.п.) найти или доказать трудно, замени это на равное или связанное с ним.
- 3. Приёмы доказательства равенства отрезков:
 - Из равенства треугольников;
 - Боковые стороны в равнобедренном треугольнике;
 - Радиусы одной окружности;
 - Найти величины отрезков и сравнить их;
 - Свойство биссектрисы, медианы и высоты равнобедренного треугольника.
- 4. Приёмы доказательства равенства углов:
 - Из равенства треугольников;
 - Углы при основании равнобедренного треугольника;
 - Накрест лежащие и соответственные углы при параллельных прямых и секущей;
 - Найти величины углов и еравнить их;
 - Свойство биссектрисы, медианы и высоты равнобедренного треугольника.

Элементарные задачи на построение

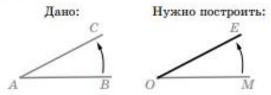
Решим вместе

3) Построим угол, равный данному.

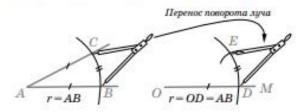


Анализ:

Анализ в задачах на построение начинают с того, что изображают фигуру, которую нужно построить, чтобы было легче составить план этого построения.



Для построения нужно повернуть луч OE от луча OM вокруг точки O так, как повернут луч AC от луча AB вокруг точки A. Поворот удобно отмерять по дуге, поэтому нужно провести две дуги одинаковых радиусов с центрами в точках A и O, и по ним уже отмерить повороты лучей. Величину радиуса можно взять любой.



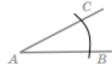
Циркулем измерим расстояние CB и из точки D по дуге DE отложим это расстояние, сделав «засечку», то есть проведя маленькую дужку.

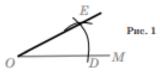
Получится точка E. Проведя луч OE, получим искомый $\angle MOE$. В тетради построение должно сопровождаться кратким описанием выполняемых действий.

Оформление решения:

Дано: $\angle A$, луч OM. Построить:

 $\angle MOE = \angle A$.





Пишут не «дуга», а окружность.

Построение: 1) Окр. (A; AB), AB — любое; 2) Окр. (O; OD), OD=AB;

3) Окр. (D; DE), DE=BC;

Луч OE.

∠MOE — искомый.

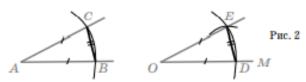
Дальше нужно доказать, что полученная фигура — именно то, что требовалось построить. В данном случае следует доказать, что $\angle MOE = \angle A$.

Анализ:

Посмотрим на рис. 1

В1: «В какой геометрической фигуре находится элемент, о котором идет речь?»

 $\angle A$ и $\angle MOE$ находятся в фигурах, напоминающих треугольники, — две стороны у них отрезки, а третья — дуга. Поскольку нам известны признаки равенства **треугольников**, то следует сделать дополнительное построение: соединить отрезками точки C и B, а также точки E и D (см. рис. 2). Таким образом мы ответили ещё на один вопрос к решению задачи (В5): «Какое дополнительное построение нужно сделать?» (см. стр. 116 и 117).



B2: «Что известно об этой фигуре?».

По построению AC = OE, AB = OD (одинаковые радиусы);

DE=BC (одинаковые радиусы), значит, $\Delta OED=\Delta ACB$ по трем сторонам.

Доказательство:

Доп. постр.: отрезки CB и ED.

В $\triangle ACB$ и $\triangle OED$: AC=OE, AB=OD, CB=ED по построению, значит, $\triangle ACB=\triangle OED$ по трем сторонам, след., $\angle MOE=\angle A$.

39

Конспект № 10

Элементарные задачи на построение

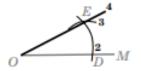
1) Построение угла, равного данному.

Дано:

 $\angle A$, луч OM.

Построить:

 $\angle MOE = \angle A$.



Построение: 1) Окр. (A; AB); AB — любое;

2) Okp. (O; OD); OD = AB;

3) OKD. (D; DE); DE = BC;

Луч ОЕ.

∠МОЕ — искомый.

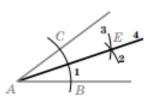
Замечание.

В задачах на построение все вспомогательные элементы, например дуги, не стирают, они указывают на ход решения.

2) Построение биссектрисы угла.

Дано: ∠А.

Построить: биссектрису.

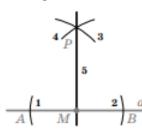


Построение:

- 1) Окр. (A; AB); AB любое;
- 2) Okp. (B; BE); BE > CB:2; 3) Okp. (C; CE); CE = BE; точка E.
- Луч AE искомая биссектриса ∠А.
- 3) Через точку, лежащую на данной прямой, провести к ней перпендикулярную прямую.

Дано: Прямая a, $M \in a$.

Построить: $PM \perp a$.



Построение:

- 1) Окр. (M; MA), MA любое;
- 2) Okp. (M; MB), MB = MA;
- 3) Okp. (A; AP), AP > AM;4) Okp. (B; BP), BP = AP; $\}$ TOUKA P.

45

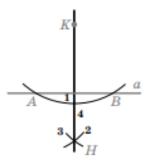
Прямая РМ — искомая.

4) Через точку, не лежащую на данной прямой, провести к ней перпендикулярную прямую.

Дано:

Прямая $a, K \notin a$.

Построить: $KH \perp a$.



Построение:

- Окр. (K; KA) пересекает а в А и В.
- 2) Okp. (A; AH), AH > AB : 2;3) Okp. (B; BH), BH = AH; Touka H.
- 4) Прямая КН искомая.

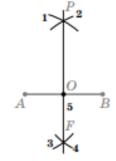
5) Построение середины отрезка.

Дано:

Отрезок AB.

Построить:

 $O \in AB$, чтобы AO = OB.



Построение:

- 5) $PF \cap AB = O$, O искомая точка.

Конец конспекта

Популярная литература по психологии:

С. В. Кривцова «Учитель и проблемы дисциплины»;

М.Е. Литвак «Если хочешь быть счастливым»;

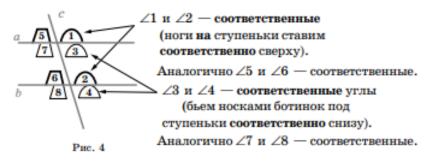
Карен Прайор «Не рычите на собаку»;

Дэвид Стайбел «Когда слова вредят делу»;

В. Р. Дольник «Непослушное дитя биосферы» (Беседы о поведении человека в компании птиц, зверей и детей);

Анна Быкова «Секреты спокойствия «Ленивой мамы»; Окунев А. А. «Спасибо за урок, дети!» (математик).

Вебинар «Как организовать повторение математики» и другие на сайте лахова. рф



Соответственные углы либо оба над, либо оба под прямыми а и в.

Конец конспекта

Начерти две прямые, пересеки их секущей и назови все пары накрест лежащих, односторонних и соответственных углов.

Конспект № 12

Теоремы и аксиомы. Аксиома параллельных прямых

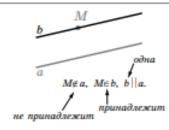
Геометрия — наука о свойствах геометрических фигур. Каждое свойство можно назвать утверждением о чем-то.

Теорема — утверждение, которое можно доказать путем рассуждений (как решение в задаче).

Аксиома — утверждение, доказать которое **нельзя**, настолько оно простое и очевидное.

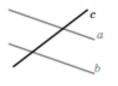
Например, I признак равенства треугольников можно доказать. Это — теорема.

Утверждение: «Через 2 точки можно провести только одну прямую» доказать нельзя. Это — аксиома.



Аксиома параллельных прямых

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.



Следствие 1 из аксиомы (теорема 1)

Следствие 2 из аксиомы (теорема 2)

Если 2 прямые параллельны третьей прямой, то они параллельны между собой.

T.к. a||b и c||b, то a||c.

Теорема 3

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой.

T.к. a||b и $c\perp b$, то $c\perp a$.

Конец конспекта

Конспект № 13

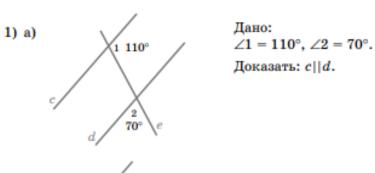
Прямая и обратная теоремы. Признаки параллельности и свойства параллельных прямых

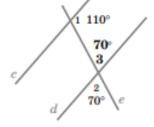
В обратной теореме условие и заключение прямой теоремы поменялись местами.

Чертеж	Признаки параллельности	Свойства параллель- ных прямых (обратная теорема)	
а Накрест лежащие углы b (Накр. леж. углы)	Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.	Если 2 параллельные прямые пересечены секущей, то накрест лежащие углы равны.	
	Если $\angle 1 = \angle 2$, то $a \mid\mid b$.	Если $a b$, то $\angle 1 = \angle 2$.	
а 1 В 2 Соответственные углы (соотв. углы)	Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. Если $\angle 1 = \angle 2$, то $a b$.	Если 2 параллельные прямые пересечены секущей, то соответственные углы равны. Если а b, то ∠1 = ∠2.	
b C $O\partial носторов и V V V V V V V V V V$	Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то эти прямые параллельны.	Если 2 параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.	
	Если $\angle 1 + \angle 2 = 180^{\circ}$, то $a b$.	Если $a b$, то $\angle 1 + \angle 2 = 180^{\circ}$.	

Конец конспекта

Решим вместе





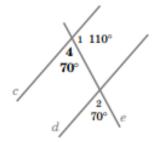
1 способ

Анализ:

B1. $\angle 1$ и $\angle 2$ без названия, но $\angle 1$ и $\angle 3$ одностор. при c, d и сек. e. $\angle 3 = \angle 2$ (вертик.).

Решение:

 $\angle 3 = \angle 2 = 70^\circ$ (вертикальные). $\angle 1 + \angle 3 = 110^\circ + 70^\circ = 180^\circ$ и они односторонние при прямых c,d и секущей e, значит, c||d.



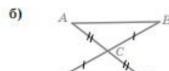
2 способ

Анализ:

B1. $\angle 1$ и $\angle 2$ без названия, но $\angle 4$ и $\angle 2$ соотв. при c, d и сек. e. $\angle 4 = 180^{\circ} - \angle 1$ (смежные).

Решение:

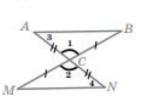
 $\angle 1+\angle 4=180^\circ$ (смежные), значит, $\angle 4=180^\circ-\angle 1=180^\circ-110^\circ=70^\circ$. $\angle 4=70^\circ$ и $\angle 2=70^\circ$ (по условию). $\angle 4=\angle 2$ и они соответственные при прямых c, d и секущей e, значит, c||d.



Дано: AC = CN,

BC = CM.

Доказать: AB||MN.



Анализ:

В1. ∠3 и ∠4 — накрест лежащие углы при AB, MN и секущей AN.

Ho $\angle 3$ и $\angle 4$ — в $\triangle ABC$ и $\triangle MCN$.

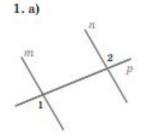
В2, 3. Если доказать, что $\triangle ABC = \\ = \triangle MCN$, то $\angle 3 = \angle 4$ и можно будет применить признак параллельности.

Решение (даны сокращения):

В $\triangle ABC$ и $\triangle MCN$: AC=CN, BC=CM по усл., $\angle 1=\angle 2$ (вертик.), значит, $\triangle ABC=\triangle MCN$ по I признаку. След., $\angle 3=\angle 4$, но они накр. леж. при AB, MN и сек. AN, значит, AB||MN.

Заметим, что в обеих задачах мы искали пары углов, о которых говорится в признаках параллельности.

Реши сам



Дано: ∠1 = ∠2. Локазать:

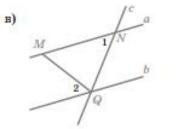
 $m \mid n$.

3 2 Дано: ∠1 = 20°,

 $\angle 2: \angle 3 = 1:8.$

Доказать:

Реши двумя способами.



Дано:

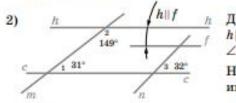
∠1=∠2,

MQ = QN.

Доказать: a||b.

Решим вместе

Повтори сначала конспект № 12.



Дано: $h||f, \angle 1 = 31^{\circ}, \angle 2 = 149^{\circ};$ $\angle 3 = 32^{\circ}.$

Найдем, сколько общих точек имеют прямые f и c, m и f, m и n.

Анализ:

Чтобы найти, сколько общих точек имеют 2 прямые, нужно определить, будут ли они параллельны (нет общих точек), или будут пересекаться (1 общая точка).

а) f и c —? Путь I. В1. f и c пересечены n, но про угол между f и n ($\angle fn$) ничего не известно.

Путь II. В1. Рядом с f и c есть прямая h.

B2. h||f (и наоборот: f||h) по условию.

ВЗ. Для применения следствия 2 из аксиомы не хватает c||h.

В1. с и h пересечены т.

B2. ∠1 + ∠2 = 180° (односторонние).

б) т и f —? То, что на рисунке видно, что т пересечёт f решением не является. Это пересечение еще нужно доказать.

B1. и **B2.** m пересекает c и h; h||f по условию.

Применим следствие 1 из аксиомы.

в) т и п —? В1. Их пересекает с.

B2. ∠1≠∠3 (соответственные).

Решение:

1) $\angle 1 + \angle 2 = 31^{\circ} + 149^{\circ} = 180^{\circ}$ и они одностор. при h, c и сек. m, значит, $c \mid |h$.

2) h||f по усл., то есть f||h.

3) c||h и f||h, значит, c||f, (следствие 2 из аксиомы); c и f не имеют общих точек.

4) h||f по усл. $m \cap h$ по усл., значит, $m \cap f$ (следствие 1 из аксиомы); m и f имеют 1 общую точку. $\uparrow_{nepecekaem}$

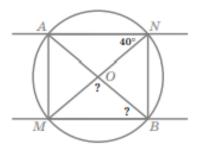
5) ∠1=31°, ∠3 = 32° по усл., значит, ∠1 ≠ ∠3. Это соотв. углы при m, n и сек. c, значит, $m \ n$, то есть $m \cap n$; m и n имеют 1 общую точку.

↑ не параллельна

Ответ: c и f не имеют общих точек, m и f, m и n имеют по одной общей точке.

Решим вместе

5) В окружности O проведены диаметры AB и MN. Точки, лежащие на окружности, соединены хордами. Найдем $\angle MOB$ и $\angle MBA$, если $\angle ANM = 40^\circ$. Определим, сколько общих точек имеют прямые AN и MB.



Дано:

окр. O,

 $\angle ANM = 40^{\circ}$.

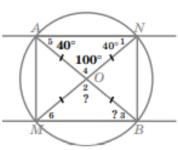
Найти:

- a) $\angle MOB$, $\angle MBA$;
- б) число общих точек AN и MB.

Для краткости нужные нам углы по мере необходимости будем обозначать номерами.

79

Анализ:



Здесь нам поможет четвертый (вспомогательный) вопрос:

«Что можно легко определить в данной задаче?».

Ответ: Заметим, что O — центр окружности, значит, OA = ON = OB = OM как её радиусы, следовательно, все треугольники с вершинами в точке O — равнобедренные.

Отметим это на чертеже и будем отвечать на основные вопросы.

І путь. В1. ∠2 в ∆МОВ. В2. Он р/б, углы неизвестны.

II путь. 1) Здесь нам поможет вопрос № 6: «Какой приём нужно использовать?». Подойдёт приём «Замена» (см. стр. 117).

B6. $\angle 2 = \angle 4$ (вертик.). **B1.** $\angle 4$ в $\triangle AON$. **B2.** Он р/б, зн., $\angle 5 = \angle 1 = 40^\circ$, но $\angle 4 + \angle 5 + \angle 1 = 180^\circ$, зн., $\angle 4 = 180^\circ - (\angle 5 + \angle 1)$.

2) В1.
$$\angle 3$$
 в $\triangle MOB$. В2. Он р/б, зн., $\angle 3 = \angle 6$. $\angle 3 + \angle 6 + \angle 2 = 180^{\circ}$, $\angle 2 = 100^{\circ}$, зн., $\angle 3 = \angle 6 = (180^{\circ} - \angle 2)$: 2.

3) Нужно выяснить, прямые AN и MB будут пересекаться, или опи параллельны. (Вепомним признаки параллельности прямых.) Удобно использовать секущие MN или AB, так как уже доказано, что накрест лежащие углы при AN, MB и любой из этих секущих равны.

Решение:

Заметим, что OA = ON = OB = OM как радиусы окр. O.

- 1) Т.к. OA = ON, то есть $\triangle AON$ р/б, зн., $\angle 5 = \angle 1 = 40^{\circ}$ (при основании).
- 2) B $\triangle AON \angle 4 = 180^{\circ} (\angle 1 + \angle 5) = 180^{\circ} (40^{\circ} + 40^{\circ}) = 100^{\circ}; \angle 4 = 100^{\circ}.$
- 3) $\angle 2 = \angle 4 = 100^{\circ}$ (вертик.); $\angle MOB = 100^{\circ}$.
- 4) T. K. OM = OB (CM. *3ametum*), to ects $\Delta MOB p/6$, 3H., $\angle 6 = \angle 3$.
- 5) B $\triangle MOB \angle 3 = \angle 6 = (180^{\circ} \angle 2) : 2 = (180^{\circ} 100^{\circ}) : 2 = 40^{\circ}.$ $\angle MBA = 40^{\circ}.$
- 6) ∠1 = 40° по усл., ∠6 = 40° по п. 5, зн., ∠1 = ∠6. Это накр. леж. углы при AN, MB и сек. MN, зн., AN||MB и не имеют общих точок.

Ответ: $\angle MOB = 100^{\circ}$, $\angle MBA = 40^{\circ}$; нет общих точек.

Вопросы

к решению геометрической задачи

Основные

 (В1) В какой геометрической фигуре находится элемент, о котором идёт речь? Чем он в этой фигуре является?

Например, элемент находится в ДАВС и является в нем медианой.

- (B2) Что известно об этой фигуре в задаче, и какими свойствами она обладает?
 - Уясни себе данные задачи.
 - Выбери свойства фигуры, которые могут помочь;
 - Подумай, на что похож чертёж;
 - Вспомни формулы, теоремы, относящиеся к делу;
 - Если фигур несколько, подумай, как они могут быть связаны (равенство, подобие, части и т.п.).
- 3. (ВЗ) Чего не хватает для решения (доказательства)?
 - Вспомни определения, признаки, сравни их с тем, что известно.

Дополнительные

- 4. (В4) Что можно легко определить в данной задаче?
 - Если нет других идей, то найди все элементы и связи между ними, которые можно легко определить, и ситуация должна проясниться;
 - В анализе задачи и записи решения этот поиск удобно начать словами: «Заметим, что...»
- 5. (В5) Какое дополнительное построение нужно сделать?
 - Вспомни стандартные дополнительные построения (см. перечень на стр. 117);
 - Подумай, на что похоже расположение элементов на чертеже, и что хочется туда добавить для полноты картины.
- 6. (В6) Какой приём нужно использовать? (См. перечень на стр. 117.)

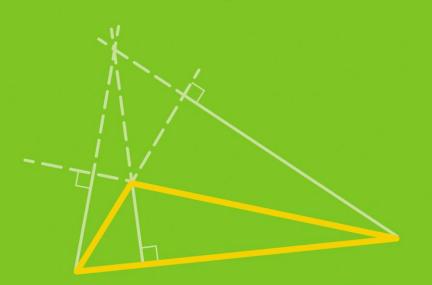
ГЕОМЕТРИЯ

за 7 занятий

В книге представлена авторская методика изучения геометрии, которая поможет:

- Понять все темы курса геометрии 7 класса.
- Научиться анализировать и решать задачи.
- Быстро повторить пройденный материал.
- Подготовиться к контрольным или самостоятельным работам.

Книга будет особенно полезна тем, кто учится в спортивных или художественных школах, кто вынужденно пропускал занятия по болезни или другим причинам.



7

Приёмы для решения геометрических задач в 8 классе

- 1.- 4. из 7 класса
- 5. Формула. Используй формулу, которая связывает известные и неизвестные величины.
- 6. **Приравнивание**. Приравняв периметры, площади и т.п. можно найти неизвестные элементы.
- 7. Сумма-разность. Длину отрезка, угол, площадь или объём можно найти как сумму или разность отрезков, углов, площадей или объёмов.
- 8. **Перемещение.** При нахождении площади, части фигуры можно отделять и перемещать в более удобные места.

Стандартные дополнительные построения 8 кл.

Иногда помогают вопросы:

- 1. Какое нужно сделать дополнительное построение, чтобы на чертеже появился недостающий элемент формулы, или фигура, свойствами которой можно воспользоваться. (Чаще всего это треугольник.)
- 2. На что похожа та или иная часть чертежа? Может быть достроить её до целого?

Совет: проще соединить две имеющиеся точки, а потом доказать, что этот отрезок - то, что нужно (высота, биссектриса и т. п.), чем сначала построить нужный элемент, а потом доказывать, что он пройдёт именно через заданную точку.

Стандартные дополнительные построения

- 1) Проведи в фигуре высоту (в равнобедренной трапеции лучше сразу две), особенно, если в задаче нужно найти площадь фигуры. Высоту следует проводить в наиболее информативной части фигуры (об элементах которой известно больше всего).
- 2) Соедини точки на окружности с её центром, получишь равные радиусы.
 - 3) Проведи радиус в точку касания, он перпендикулярен к касательной.
- 4) Соедини **вершину** многоугольника **с центром вписанной окружности** получишь биссектрису его угла.

- 5) Проведи биссектрисы односторонних углов при параллельных прямых. Биссектрисы пересекутся под прямым углом.
- 6) Если в окружность вписан равнобедренный треугольник, проведи диаметр окружности через вершину, противоположную основанию. На этом диаметре будут лежать высота, биссектриса, медиана и серединный перпендикуляр треугольника.
- 7) Соедини **середину стороны** многоугольника с **центром описанной** окружности, получишь серединный перпендикуляр.
- 8) В равностороннем треугольнике проведи две медианы (они же высоты, биссектрисы и серединные перпендикуляры). Точка их пересечения центр вписанной и описанной окружности. Медиана равна сумме их радиусов.
- 9) Соедини точку окружности с концами диаметра. Получишь прямой угол и прямоугольный треугольник.
 - 10) Построй вписанные углы, опирающиеся на одну дугу. Они равные.
- 11) Построй треугольник, если его не хватает для нахождения нужного элемента.
- 12) Опусти перпендикуляр из точки на прямую, если нужно найти или использовать расстояние между ними.

Решение задач при помощи квадратных уравнений

Конспект № 12

Решение задач при помощи уравнений

ВИДЫ ПРОЦЕССОВ

Процесс	Величины, характеризую- щие процесс	Связь между величинами	
Движение	s — путь v — скорость t — время	$s = v \cdot t$ b $A = N \cdot t$	
Работа	A — работа N — производительность t — время		
Торговля	Cm — стоимость \mathcal{U} — цена κ — количество	$Cm = \mathcal{U} \cdot \kappa$	
Q — общее количество q — количество в 1 мере k — количество мер		$Q = q \cdot k$	

вопросы

- 1. О каких величинах идёт речь?
 - а) О каком процессе идёт речь и какими величинами он характеризуется?
 - б) Сколько этапов содержит этот процесс (или сколько объектов в нём участвуют)?
- 2. Какие величины известны и что нужно найти?
- Как связаны величины в задаче? (Это самый главный вопрос.)
- Какую величину удобно обозначить буквой x и как выразить через неё другие неизвестные величины?
- Какая связь между величинами осталась неиспользованной? (На основании этого условия составь уравнение.)
- (Дополнительный вопрос.) Легко ли решить полученное уравнение? (Отвечая на этот вопрос, нужно подумать, не следует ли взять за х другую величину и для составления уравнения использовать иную связь между величинами.)

14 Рабочий изготовил в начале смены 2 детали за полчаса и подумал, что если будет продолжать работать в том же темпе, то ему придётся потратить на выполнение этого заказа ещё 40 мин после перерыва. Поэтому рабочий стал делать каждую деталь на 3 мин быстрее и сдал заказ ещё за 20 мин до перерыва. Каков размер заказа? Через какое время после начала смены наступает перерыв?

ВОПРОС 1. Задача на работу характеризуется тремя величинами — A, N, t, значит, нам понадобятся 3 строчки в таблице. Речь идёт о возможном варианте работы, о фактическом и об оптимальном, когда рабочий точно уложился

бы в срок до перерыва. Значит, нужны 3 столбца в таблице. Будем рассматривать в таблице не всю работу, а только ту её часть (A_{cer}) , которую рабочий мог сделать тремя способами.

ВОПРОС 2. Данные задачи нужно перевести в удобную для нас форму:

$$\frac{40 \text{ мин}}{40 \text{ мин}} = \frac{40 \text{ мин}}{60 \text{ мин}} = \frac{2}{3} \text{ ч}; \quad 20 \text{ мин} = \frac{20 \text{ мин}}{60 \text{ мин}} = \frac{1}{3} \text{ ч}.$$

Производительность $N_{\mbox{\tiny BOSM}} = 2$ дет. за полчаса, значит, за час он сделал бы 4 детали, то есть $N_{\text{porm}} = 4$ дет./ч. Фактически он делал 1 деталь за время:

$$30$$
 мин : 2 дет. -3 мин = $15 - 3 = 12$ (мин).

Найдём, сколько деталей он сделал в час (60 мин).

$$x$$
 дет. за 12 мин
 x дет. за 60 мин
 $\frac{1}{x} = \frac{12}{60}; \quad x = \frac{1 \cdot 60}{\cancel{12}_1} = 5 \quad (\text{дет./ч});$
 $N_{\text{факт}} = 5 \quad \text{дет./ч}.$

Величины	Возможно	Фактически	Оптимально
$A_{ m ocr}$, дет.	$4\left(x+\frac{2}{3}\right)$	$5 \cdot \left(x - \frac{1}{3}\right)$	AN ON THE
	одинаковая		
N, дет./ч	4	5	ALL TOOLEGE
<i>t</i> , ч	$x+\frac{2}{3}$	$x-\frac{1}{3}$	процежся раб
	на $\frac{2}{3}$ б	на $\frac{1}{3}$ м	?

- ВОПРОС 3. Связи в столбцах: $A = N \cdot t$. В строчках: все остатки работы одинаковые. $A_{\text{возм}} = A_{\text{факт}} = A_{\text{опт}}$.
- ВОПРОС 4. Пусть x ч время, оставшееся до перерыва $(t_{\rm out})$, тогда рабочий мог потратить на изготовление заказа $x+\frac{2}{3}$ ч, а потратил $x-\frac{1}{3}$ ч, при этом его работа будет выражаться соответственно: $4 \cdot \left(x + \frac{2}{3}\right)$ деталей и $5 \cdot \left(x - \frac{1}{3}\right)$ де-
- ВОПРОС 5. Неиспользованной осталась связь в первой строчке. Так как количество произведённых деталей в любом случае одно и то же, то можно составить уравнение

$$4 \cdot \left(x + \frac{2}{3}\right) = 5 \cdot \left(x - \frac{1}{3}\right), \qquad 4x + \frac{8}{3} = 5x - \frac{5}{3},$$
$$\frac{8}{3} + \frac{5}{3} = 5x - 4x, \qquad \frac{13}{3} = x, \qquad x = 4\frac{1}{3}.$$

Время от начала смены до перерыва: $t = \frac{1}{2} + x$; $t = \frac{1}{2} + 4\frac{1}{3} = \frac{3}{6} + 4\frac{2}{6} = 4\frac{5}{6} = 4$ ч 50 мин.

$$\frac{1}{2} + \frac{1}{3} = \frac{1}{6} + \frac{1}{6} = \frac{1}{6} = \frac{1}{1} = \frac{1}{3} = \frac{1}$$

$$A_{\text{ост}} = 4 \cdot \left(x + \frac{2}{3}\right) = 4 \cdot \left(\frac{13}{3} + \frac{2}{3}\right) = 4 \cdot \frac{5\cancel{16}}{\cancel{3}_1} = 20$$
 дет.

Размер заказа: A = 2 + 20 = 22 дет.

Ответ: заказ состоит из 22 деталей. Перерыв наступает через 4 ч 50 мин после начала смены.

ПРАВИЛО

Если в задаче не дана размерность величины (шт., га, л и т. п.), то прими всю величину за единицу (1 целая работа).

- 15 Полную кастрюлю картошки Катя очищает за $\frac{2}{3}$ того времени, которое требуется Пете, чтобы очистить $\frac{4}{5}$ того же количества картошки. Целую кастрюлю Петя чистит на 21 мин дольше Кати. За какое время каждый из них очистит полную кастрюлю?
- ВОПРОС 1. Процесс работы характеризуется тремя величинами: А, N, t. Значит, в таблице будут 3 строчки. В задаче три процесса работы: Катя очистит полную кастрюлю, Петя очистит $\frac{4}{5}$ кастрюли, и Петя очистит полную кастрюлю картошки, значит, нужны 3 столбца.

Координаты:

Адрес сайта Лаховой Натальи Викторовны: лахова.рф

Адрес электронной почты: <u>nvil-58@mail.ru</u>

```
Издательство «СМИО Пресс» г. Санкт-Петербург, ул. Седова, д. 97, к. 3 Тел. (812) 976-94-76 (911) 290-90-26 (МТС) e-mail: <a href="mailto:smiopress@mai.ru">smiopress@mai.ru</a> http://smio.ru
```